- 如何使用graph-tool模块,如何导入?如何使用graph,使用其算法?
- 如何使用Boost Graph库,安装,测试?
1 创建和操纵图
如何创建空图?
g = Graph()
如何精准的创建有向图和无向图?
ug = Graph(directed=False)
如何切换有向和无向?
ug.set_directed(False)
如何查询图的有向和无向属性?
assert(ug.is_directed() == False)
如何通过一个已有的图创建新图?
g1 = Graph()
g2 = Graph(g1)
如何添加顶点?
v1 = g.add_vertex()
v2 = g.add_vertex()
如何创建边?
e = g.add_edge(v1, v2)
如何浏览显示已有的图?
graph_draw(g, vertex_text=g.vertex_index, vertex_font_size=18,output_size=(200, 200), output="two-nodes.png")
如何获得顶点的出度?
print(v1.out_degree())
怎么返回一条边的source和target?
print(e.source(), e.target())
如何创建顶点,创建指定数量的顶点?
vlist = g.add_vertex(10)
print(len(list(vlist)))
如何获得顶点的索引?
v = g.add_vertex()
print(g.vertex_index[v])
print(int(v))
怎么将顶点和边删除?fast == True选项如何使用?set_fast_edge_removal()如何使用?
g.remove_edge(e)
g.remove_vertex(v2)
如何通过索引获得顶点?
v = g.vertex(8)
如何通过索引获得边?
g.add_edge(g.vertex(2), g.vertex(3))
e = g.edge(2, 3)
如何显示边的索引?
e = g.add_edge(g.vertex(0), g.vertex(1))
print(g.edge_index[e])
1.1 遍历顶点和边
1.1.1 遍历所有顶点或边
- 如何遍历图所有的顶点或边?
vertices()
edges()
for v in g.vertices(): print(v)for e in g.edges(): print(e)
1.1.2 遍历一个顶点的neighbourhood
- 如何遍历顶点的出/入边以及出/入邻接点?
out_edges()
in_edges()
out_neighbours()
in_neighbours()
from itertools import izipfor v in g.vertices():for e in v.out_edges(): print(e)for w in v.out_neighbours(): print(w)# the edge and neighbours order always matchfor e,w in izip(v.out_edges(), v.out_neighbours()): assert(e.target() == w)
2 属性映射
什么是属性映射?有哪几种类型?由哪个类操作?属性映射的值得类型有哪几种?
一种将额外信息与顶点、边或图本身相关联的方式。
顶点、边和图。
PropertyMap类
bool、int16_t、int32_t、int64_t、double、long double、string、vector bool
vector uint8_t、vector int16_t、vector int32_t、vector int64_t、vector double
vector long double、vector string、python::object
如何为图创建新的属性映射?
new_vertex_property()
new_edge_property()
new_graph_property()
如何访问属性映射?
通过顶点或边的描述符或图本身,来访问该值(属性映射描述符[顶点、边或图])
vprop_double = g.new_vertex_property("double")
顶点的属性映射vprop_double[g.vertex(10)] = 3.1416
.vprop_vint = g.new_vertex_property("vector<int>")
顶点的属性映射vprop_vint[g.vertex(40)] = [1, 3, 42, 54]
.eprop_dict = g.new_edge_property("object")
边的属性映射eprop_dict[g.edges().next()] = {"foo": "bar", "gnu": 42}
.gprop_bool = g.new_graph_property("bool")
图的属性映射gprop_bool[g] = True
属性映射访问的其他形式?
vprop_double.get_array()[:] = random(g.num_vertices())
get_array()方法vprop_double.a = random(g.num_vertices())
a属性
2.1 内部属性映射
什么是内部属性映射?
被复制并和图一起被保存到一个文件,属性被内在化
怎么使用内部属性映射?
属性映射必须有一个唯一的名称,相当于一个类型,可以产生具体的实例,即具体的属性
vertex_properties
vpedge_properties
epgraph_properties
gp- 区分类型,名字和值!!!
>>> gprop = g.new_graph_property("int") #定义了一个类型>>> g.graph_properties["foo"] = gprop # 定义了一个变量>>> g.graph_properties["foo"] = 42 # 为变量赋了一个值>>> print(g.graph_properties["foo"]) #输出变量的值42>>> del g.graph_properties["foo"] # 删除了定义过的变量
- 如何通过属性访问属性映射?
>>> vprop = g.new_vertex_property("double")>>> g.vp.foo = vprop # 等价于g.vertex_properties["foo"] = vprop>>> v = g.vertex(0)>>> g.vp.foo[v] = 3.14 #等价于v.vertex_properties["foo"] = 3.14>>> print(g.vp.foo[v])3.14
图的I/O
图保存和加载的四种格式?
graphml、dot、gml和gt
- 图从文件保存和加载的方法,从磁盘加载的方法?
save()
load()
load_graph()
.
g = Graph()g.save("my_graph.xml.gz")g2 = load_graph("my_graph.xml.gz")
.
pickle模块
一个例子:构建一个 Price网络
- 如何看懂Price网络的代码?
#! /usr/bin/env python# We will need some things from several placesfrom __future__ import division, absolute_import, print_functionimport sysif sys.version_info < (3,): range = xrangeimport osfrom pylab import * # for plottingfrom numpy.random import * # for random samplingseed(42)# We need to import the graph_tool module itselffrom graph_tool.all import *# let's construct a Price network (the one that existed before Barabasi). It is# a directed network, with preferential attachment. The algorithm below is# very naive, and a bit slow, but quite simple.# We start with an empty, directed graphg = Graph()# We want also to keep the age information for each vertex and edge. For that# let's create some property mapsv_age = g.new_vertex_property("int")e_age = g.new_edge_property("int")# The final size of the networkN = 100000# We have to start with one vertexv = g.add_vertex()v_age[v] = 0# we will keep a list of the vertices. The number of times a vertex is in this# list will give the probability of it being selected.vlist = [v]# let's now add the new edges and verticesfor i in range(1, N): # create our new vertex v = g.add_vertex() v_age[v] = i # we need to sample a new vertex to be the target, based on its in-degree + # 1. For that, we simply randomly sample it from vlist. i = randint(0, len(vlist)) target = vlist[i] # add edge e = g.add_edge(v, target) e_age[e] = i # put v and target in the list vlist.append(target) vlist.append(v)# now we have a graph!# let's do a random walk on the graph and print the age of the vertices we find,# just for fun.v = g.vertex(randint(0, g.num_vertices()))while True: print("vertex:", int(v), "in-degree:", v.in_degree(), "out-degree:", v.out_degree(), "age:", v_age[v]) if v.out_degree() == 0: print("Nowhere else to go... We found the main hub!") break n_list = [] for w in v.out_neighbours(): n_list.append(w) v = n_list[randint(0, len(n_list))]# let's save our graph for posterity. We want to save the age properties as# well... To do this, they must become "internal" properties:g.vertex_properties["age"] = v_ageg.edge_properties["age"] = e_age# now we can save itg.save("price.xml.gz")# Let's plot its in-degree distributionin_hist = vertex_hist(g, "in")y = in_hist[0]err = sqrt(in_hist[0])err[err >= y] = y[err >= y] - 1e-2figure(figsize=(6,4))errorbar(in_hist[1][:-1], in_hist[0], fmt="o", yerr=err, label="in")gca().set_yscale("log")gca().set_xscale("log")gca().set_ylim(1e-1, 1e5)gca().set_xlim(0.8, 1e3)subplots_adjust(left=0.2, bottom=0.2)xlabel("$k_{in}$")ylabel("$NP(k_{in})$")tight_layout()savefig("price-deg-dist.pdf")savefig("price-deg-dist.png")